Global Well-Posedness for the Compressible Nematic Liquid Crystal Flows

نویسندگان

چکیده

In this paper, we prove the unique existence of global strong solutions and decay estimates for simplified Ericksen–Leslie system describing compressible nematic liquid crystal flows in RN, 3≤N≤7. Firstly, rewrite Lagrange coordinates, secondly, well-posedness transformed system, which is main task paper. The proof based on maximal Lp-Lq regularity to linearized problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of Nematic Liquid Crystal Flow

In this paper, we establish the local well-posedness for the Cauchy problem of the simplified version of hydrodynamic flow of nematic liquid crystals (1.1) in R3 for any initial data (u0, d0) having small L3 uloc -norm of (u0,∇d0). Here L3uloc(R 3) is the space of uniformly locally L3-integrable functions. For any initial data (u0, d0) with small ‖(u0,∇d0)‖L3(R3), we show that there exists a un...

متن کامل

Blow up criterion for compressible nematic liquid crystal flows in dimension three

In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of grad...

متن کامل

Strong solutions of the compressible nematic liquid crystal flow

We study strong solutions of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in a domain Ω ⊂ R. We first prove the local existence of unique strong solutions provided that the initial data ρ0, u0, d0 are sufficiently regular and satisfy a natural compatibility condition. The initial density function ρ0 may vanish on an open subset (i.e., an initial vacuu...

متن کامل

Global Well-posedness of Compressible Bipolar Navier–Stokes–Poisson Equations

We consider the initial value problem for multi-dimensional bipolar compressible Navier– Stokes–Poisson equations, and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11010181